ADPD4100 | 多模式传感器前端
应用
- 可穿戴健康和保健监护仪:心率监护仪 (HRM)、心率变异性 (HRV)、应力、血压估测、血氧饱和度 (SpO2)、水分、身体成份
- 工业监测:一氧化碳 (CO)、二氧化碳 (CO2)、烟雾和气溶胶探测
- 家庭患者监护
优势和特点
- 多模式模拟前端
- 8 个输入通道,具有多种工作模式以适应多种传感器测量
- 可同步采样的双通道处理
- 12 个可编程时隙,适用于同步传感器测量
- 灵活的输入多路复用,支持差分和单端传感器测量
- 8 个发光二极管驱动器,可以同时驱动其中 4 个
- 灵活的采样速率:0.004 Hz 至 9 kHz(使用内部振荡器)
- 片内数字滤波
- 发射和接收信号链的 SNR:100 dB
- AC 环境光抑制:60 dB 至 1 kHz
- 总 LED 峰值驱动电流为 400 mA
- 总系统功耗:30 µW(混合 LED 和 AFE 功率),75 dB SNR 时连续 PPG 测量,25 Hz ODR,100 nA/mA CTR
- 支持 SPI 通信
- 512 字节 FIFO 尺寸
新型模拟前端概述
PPG测量
PPG测量可检测与每个心动周期相关的组织微血管床的血容量变化。光的总吸收与心脏收缩和舒张事件引起的血容量变化相关联,产生PPG信号。PPG测量按如下方式进行:将LED光脉冲射入人体组织,然后用光电二极管收集反射/透射的光,并将光转换为光电流。ADPD4100/ADPD4101处理和测量光电流,并产生数字PPG信号。针对不同的PPG测量情况,无需对硬件连接进行任何更改便可灵活地将该AFE配置为四种工作模式之一:连续连接模式、多次积分模式、浮空模式和数字积分模式。
图1.典型PPG电路。
连续连接模式
连续连接模式是PPG测量的典型模式。它提供最佳的环境光抑制性能和高SNR。该模式在低至5 nA/mA至10 nA/mA的电荷传输比(CTR,光电流与LED电流之比)下能够很好地工作,并提供95 dB至100 dB的DC SNR。这些性能水平可以通过增加抽取系数来提高。该模式使用完整的模拟信号路径,即TIA + BPF + INT + ADC。每次ADC转换时,传入的电荷积分一次。在单个激励事件(如PPG)中,当对来自传感器响应的电荷进行积分时,积分器的大部分动态范围会被使用。在预调理周期之后,TIA连续连接到输入,故输入信号未被调制。为了降低噪声,光电二极管的阳极被预调理到TIA的基准电压(TIA_VREF)。通常将TIA_VREF设置为1.27 V,以获得TIA的最大动态范围。光电二极管的阴极连接到阴极电压源(VCx)引脚,通常将该器件设置为向光电二极管阴极提供TIA_VREF + 215 mV的电压,以在光电二极管上产生215 mV的反向偏置。这会减少信号路径噪声和光电二极管电容。在这种模式下,典型LED脉冲宽度为2μs。短LED脉冲可提供最佳环境光抑制性能。使用多个LED脉冲时,脉冲数每增加一倍,SNR便提高3 dB。由于斩波能消除积分器的低频噪声成分,因此通常使能积分器斩波以获得最高SNR。选择的TIA增益越高,折合到输入端的噪声越低,但TIA的动态范围会减小。TIA的动态范围计算如下:动态范围 = (TIA_VREF)/(TIA增益)。为了提高ADC饱和电平,可以减小TIA增益,或者增加积分器电阻。选择较高的积分器电阻可降低噪声,但选择较低的积分器电阻会增加环境光裕量。
多次积分模式
多次积分模式与连续连接模式大致相同,不同之处在于,每次ADC转换要对传入的电荷积分多次。此模式可用在弱光情况下获得高SNR,因为对于每个激励事件,它只使用少量(有时小于50%)动态范围。由于在ADC转换之前进行多次积分,因此它可以利用更大的积分器动态范围。每次ADC转换的积分次数增加一倍,SNR就会提高3 dB,这与脉冲数加倍的效果一样。此模式通常用于小输入,因此可选择最高TIA增益。此模式用在CTR低于5 nA/mA且需要良好环境光抑制的情况下。
浮空模式
浮空模式也用于弱光条件下以获得高SNR。浮空模式支持在光电二极管上进行无噪声电荷累积。光电二极管与AFE断开连接(故称之为”浮空”),以无噪声方式积累光致电荷。然后,AFE连回光电二极管,光电二极管上的电荷涌入AFE,积分以一种允许每个脉冲处理最大量电荷的方式进行,而信号路径增加的噪声量极小。由于是短调制脉冲,电荷转存会快速发生。因此,信号路径引起的噪声增加较小。另外,可以增加浮空时间以获得更高的信号电平,但光电二极管电容可以积累的电荷量是有限的。在这种模式下,带通滤波器(BPF)被旁路,因为当通过调制TIA连接来转移光电二极管中的电荷时,所产生信号的形状可能会因器件和条件而异。为了可靠地将信号与积分序列对齐,必须旁路BPF。此模式不能提供良好的环境光抑制性能,并且受光电二极管电容限制,但在非常低的光照条件下,它能提供高功耗效率且噪声较小的测量。
弱光条件下的浮空模式与多次积分模式选择
数字积分模式
多次积分模式与连续连接模式大致相同,不同之处在于,每次ADC转换要对传入的电荷积分多次。此模式可用在弱光情况下获得高SNR,因为对于每个激励事件,它只使用少量(有时小于50%)动态范围。由于在ADC转换之前进行多次积分,因此它可以利用更大的积分器动态范围。每次ADC转换的积分次数增加一倍,SNR就会提高3 dB,这与脉冲数加倍的效果一样。此模式通常用于小输入,因此可选择最高TIA增益。此模式用在CTR低于5 nA/mA且需要良好环境光抑制的情况下。
数字积分模式的优劣
脉搏血氧测定—SpO2测量
脉搏血氧测定使用红光(通常为660 nm波长)和红外(IR) LED(通常为940 nm波长)。脱氧血红蛋白主要吸收660 nm波长的光,而氧合血红蛋白主要吸收940 nm波长的光。光电二极管感知未被吸收的光,然后将感知到的信号分为直流分量和交流分量。直流分量代表组织、静脉血和非搏动性动脉血引起的光吸收。交流分量代表搏动性动脉血。然后按照下式计算SpO2的百分比:
%SpO2 = (ACred/DCred)/(ACIR/DCIR)
可将ADPD4100/ADPD4101的任意两个时隙配置为测量对红光和IR LED的响应,从而测量SpO2。其余时隙可以配置为测量来自不同波长LED的PPG,并且还可以支持ECG测量、导联脱落检测、呼吸测量及其他传感器测量。
表1.ADPD4100/ADPD4101多种工作模式和设置
作为例子,图2显示了同步的红光、绿光和IR PPG信号,以及IR信号的交流和直流部分。
图2.红光、绿光和IR PPG,标有IR PPG信号的交流和直流部分。
心率监测
ECG测量
ECG测量已纳入可穿戴设备中,例如用于抽检的手表和用于连续监测的胸贴。此类设备通常使用由金属和其他导电材料制成的电极,这些电极属于极化电极,被称为干电极。使用干电极进行ECG测量的主要挑战是电极-皮肤接触阻抗很高且过电势相对较高。
基于常规仪表放大器的ECG解决方案使用缓冲器来减轻与信号衰减相关的高电极-皮肤接触阻抗影响。右腿驱动(RLD)技术需要第三电极并将基准电压驱动回人体,在测量电压的ECG系统中,该技术的作用是抑制人体、电极和电缆所暴露所致的共模电压。
当应用于ECG测量时,ADPD4100/ADPD4101采用一种新颖的方法,即使用无源电阻电容(RC)电路来跟踪一对电极上的差分电压。无源RC电路可以简单到只有三个元件,即两个电阻RS和一个电容CS,如图3a所示。对ECG数据的每次采样过程分为两步。
在充电步骤中,两个输入引脚(IN7和IN8)浮空。如果充电时间>3τ,则电容CS上的电荷与两个电极上的差分电压成正比,其中τ为RS和CS定义的时间常数,τ=2RSCS。在电荷转移步骤中,电容连接到TIA,电荷转移到AFE进行测量。这种基于电荷测量的ECG解决方案具有多个优势,包括:无需缓冲器和RLD的第三电极,系统尺寸因外部元件减少而缩小,以及节省功耗。
图3.ECG测量配置。(a) RC采样电路和导联脱落检测电路。(b) 每个ECG数据样本的充电和电荷转移过程说明。
常规ECG解决方案中的导联脱落检测使用上拉电阻电路,会影响ECG电路的输入阻抗;相比之下,这种基于生物阻抗的在单独时隙中进行的导联脱落检测不会对ECG测量产生影响。利用此直流耦合电路,一旦电极与皮肤的接触重新建立,便会捕获到ECG信号。
图4.ECG测量和导联脱落检测。通过直流耦合即时恢复ECG。
基于阻抗的呼吸测量
使用ADPD4100/ADPD4101进行呼吸测量时,检测的是吸气和呼气周期中肺的生物阻抗变化。在重症监护病房(ICU)中,以及在睡眠期间,对患者进行呼吸测量有利于患者管理,而且能及时报警以挽救生命。这对有呼吸系统疾病和睡眠呼吸中止症的患者至关重要。仅仅睡眠呼吸中止症就是一个严重的公共健康和安全威胁,在美国有超过2500万成年人罹患此症。
当患者呼吸时,肺的容积会膨胀和收缩,导致胸部阻抗发生变化。通过将电流注入胸部路径并测量压降,可以测量该阻抗变化。图5a显示了一个参考设计,采用两个电极进行ECG测量和呼吸监测。图5b显示了同步记录的ECG、呼吸相关阻抗波和PPG。ECG和呼吸利用左右手腕上的不锈钢干电极测量,PPG利用绿光LED测量。
图5.ECG和呼吸测量。(a) 采用开尔文检测方法进行睡眠浮空ECG和呼吸测量的外部电路。(b) ECG、呼吸和PPG同步测量示例。
总结
生命体征监测以智能可穿戴设备的形式扩大了其在消费市场中的存在。可穿戴设备产生的健康信息对健康和疾病管理可以发挥重要作用。为了满足需求并使这些设备可供更广泛的人群使用,设计人员必须考虑成本、尺寸和功耗等常见需求。ADI公司的这款突破性AFE ADPD4100/ADPD4101展示了其作为多参数生命体征监测中枢的巨大优势。单个AFE设计可减少多参数VSM系统的IC数量,从而大大缩减成本和尺寸。此外,采用ADPD4100/ADPD4101设计的多参数系统可以生成同步数据,消除了数据同步的负担。